Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Tetsuzo Ito

Department of Applied Chemistry, Kanagawa Institute of Technology, Atsugi, Kanagawa 243-0292, Japan

Correspondence e-mail: ito@chem.kanagawa-it.ac.jp

Key indicators

Single-crystal X-ray study T = 296 KMean $\sigma(O-C) = 0.005 \text{ Å}$ R factor = 0.033 wR factor = 0.022 Data-to-parameter ratio = 14.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Tris(O-methyldithiocarbonato)chromium(III)

In the title complex, $[Cr(C_2H_3OS_2)_3]$, the Cr atom is coordinated by six S atoms in a distorted octahedral arrangement. The six Cr-S bond distances are in the range 2.391 (1)-2.406 (1) Å, with an average of 2.397 (2) Å.

Received 27 August 2002 Accepted 2 September 2002 Online 13 September 2002

Comment

As part of a study of metal xanthates and dialkyl dithiophosphates (Ito, 2002*a*,*b*), the crystal and molecular structure of the title complex, (I), has been determined. A displacement ellipsoid plot of (I) is shown in Fig. 1. The average Cr–S distance of 2.397 (2) Å is 0.032 (7) Å shorter than that in tris(O,O'-dimethyldithiophosphato)chromium(III), (II) (Ito, 2002*b*), which shows that the Cr–S bonds in (I) are stronger than those in (II). On the other hand, distortions of S atoms around the Cr atom from octahedral coordination in (I) are larger than those in (II). For example, average S–Cr–S chelate angles in (I) and (II) are 74.5 (2)° and 81.8°, respectively.

The structures of xanthate ligands in (I) are very similar to those in iron methylxanthate, (III) (Ito, 2002*a*). Average S–C, S₂C–O and O–CH₃ bond distances of 1.688 (4), 1.318 (4) and 1.446 (4) Å, respectively, are in agreement with the corresponding distances in (III), within standard uncertainties.

Experimental

Potassium methylxanthate (2.0 g) and hexaaquachromium(III) chloride (4.0 g) were each dissolved in pure water (40 ml and 80 ml, respectively), and a powder of (I) was precipitated by combining the two solutions. Recrystallization from an ether solution at room temperature gave dark-blue plate-shaped crystals of (I).

Crystal data

$[Cr(C_2H_3OS_2)_3]$	D_m measured by flotation in zinc
$M_r = 3/3.55$	iodide (aq.)
Monoclinic, P_{2_1}/n	Mo K α radiation
a = 9.633 (4) Å	Cell parameters from 23
b = 13.852 (4) Å	reflections
c = 11.301 (3) Å	$\theta = 15.2 - 16.3^{\circ}$
$\beta = 106.94 \ (2)^{\circ}$	$\mu = 1.65 \text{ mm}^{-1}$
$V = 1442.5 (8) \text{ Å}^3$	$T = 296 { m K}$
Z = 4	Plate, dark blue
$D_x = 1.720 \text{ Mg m}^{-3}$	$0.45 \times 0.35 \times 0.10 \text{ mm}$
$D_{\rm m} = 1.715 {\rm Mg} {\rm m}^{-3}$	

 \odot 2002 International Union of Crystallography Printed in Great Britain – all rights reserved

metal-organic papers

Data collection

Rigaku AFC-5*S* diffractometer ω -2 θ scans Absorption correction: ψ scan (North *et al.*, 1968) $T_{min} = 0.510, T_{max} = 0.848$ 3640 measured reflections 3311 independent reflections 2041 reflections with $I > 3\sigma(I)$

Refinement

Refinement on F R = 0.033 wR = 0.022 S = 1.662041 reflections 145 parameters $h = 0 \rightarrow 12$ $k = 0 \rightarrow 17$ $l = -14 \rightarrow 14$ 3 standard reflections every 150 reflections intensity decay: 0.1%

 $R_{\rm int} = 0.029$

 $\theta_{\rm max} = 27.5^{\circ}$

H-atom parameters constrained $w = 1/\sigma^2(F_o)$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.26 \text{ e } \text{\AA}^{-3}$ $\Delta\rho_{min} = -0.29 \text{ e } \text{\AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Cr-S1	2.406 (1)	\$4-C2	1.693 (4)
Cr-S2	2.394 (1)	\$5-C3	1.700 (4)
Cr-S3	2.391 (1)	S6-C3	1.676 (4)
Cr-S4	2.394 (1)	O1-C1	1.322 (4)
Cr-S5	2.403 (1)	O1-C4	1.444 (4)
Cr-S6	2.394 (1)	O2-C2	1.316 (4)
S1-C1	1.688 (4)	O2-C5	1.445 (4)
S2-C1	1.690 (4)	O3-C3	1.317 (4)
S3-C2	1.682 (4)	O3-C6	1.448 (4)
S1-Cr-S2	74.35 (4)	S2-Cr-S6	94.15 (5)
S1-Cr-S3	93.98 (5)	S3-Cr-S4	74.44 (4)
S1-Cr-S4	164.34 (5)	S3-Cr-S5	96.62 (5)
S1-Cr-S5	94.76 (5)	S3-Cr-S6	165.89 (4)
S1-Cr-S6	97.47 (5)	S4-Cr-S5	97.01 (5)
S2-Cr-S3	96.85 (5)	S4-Cr-S6	95.64 (5)
S2-Cr-S4	96.23 (5)	S5-Cr-S6	74.31 (4)
S2-Cr-S5	163.21 (5)		

H atoms were placed in geometrically calculated positions and made to ride on their parent atoms, with $U_{\rm iso}$ parameters equal to 1.2 times the $U_{\rm eq}$ parameters of their parent atoms.

Data collection: *MSC/AFC Diffractometer Control Software* (Molecular Structure Corporation, 1988); cell refinement: *MSC/AFC Diffractometer Control Software*; data reduction: *CrystalStructure* (Molecular Structure Corporation and Rigaku Corporation, 2001); program(s) used to solve structure: *SIR*92 (Altomare *et al.*, 1994); program(s) used to refine structure: *CrystalStructure*; molecular

Figure 1

ORTEP-III (Burnett & Johnson, 1996) drawing of the title chromium methylxanthate complex. Displacement ellipsoids are drawn at the 50% probability level.

graphics: *ORTEP*-III (Burnett & Johnson, 1996); software used to prepare material for publication: *CrystalStructure*.

References

- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Burnett, M. N. & Johnson, C. K. (1996). ORTEP-III. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
- Ito, T. (2002a). Acta Cryst. E58, m265-m266.
- Ito, T. (2002b). Acta Cryst. E58, m449-m450.
- Molecular Structure Corporation (1988). MSC/AFC Diffractometer Control Software. MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
- Molecular Structure Corporation & Rigaku Corporation. (2001). Crystal-Structure. Version 2.00. MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA, and Rigaku Corporation, Akishima, Tokyo 196-8666, Japan.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.